THE MORPHOLOGY OF NONCONCATENATIVE LANGUAGES

THEORETICAL CONSIDERATIONS

Matthew A. Tucker

Linguistics 105: Morphology Fall 2012

December 3, 2012

Homeworks

- HW # 8 due Wednesday.
- You need to come to class Friday to get it back.

- Baayen *et al.* (1997) should be read for Wednesday.
- This is the last reading (obviously).
- I will walk you through the stats on Wednesday, but you need to read it first.

Homeworks

- HW # 8 due Wednesday.
- You need to come to class Friday to get it back.

- Baayen *et al.* (1997) should be read for Wednesday.
- This is the last reading (obviously).
- I will walk you through the stats on Wednesday, but you need to read it first.

Homeworks

- HW # 8 due Wednesday.
- You need to come to class Friday to get it back.

- Baayen *et al.* (1997) should be read for Wednesday.
- This is the last reading (obviously).
- I will walk you through the stats on Wednesday, but you need to read it first.

Homeworks

- HW # 8 due Wednesday.
- You need to come to class Friday to get it back.

- Baayen *et al.* (1997) should be read for Wednesday.
- This is the last reading (obviously).
- I will walk you through the stats on Wednesday, but you need to read it first.

Homeworks

- HW # 8 due Wednesday.
- You need to come to class Friday to get it back.

- Baayen et al. (1997) should be read for Wednesday.
- This is the last reading (obviously).
- I will walk you through the stats on Wednesday, but you need to read it first.

ROOT-AND-PATTERN MORPHOLOGY BASICS

Major Properties of RPM:

- Affixes exist, but most appear discontinuously
- Prosodic structure is very important
- Consonants and vowels play different roles
- Some prefixes and suffixes, but usually for inflection only

SEMITIC RPM INCLUDES:

Root Made up of 2-4 consonants

Vocalism Affix carrying tense/aspect/voice; two vowels

TемрLате Pattern into which root and vocalism are placed

OTHER Some prefixes and suffixes (more to come)

ROOT-AND-PATTERN MORPHOLOGY BASICS

Major Properties of RPM:

- Affixes exist, but most appear discontinuously
- Prosodic structure is very important
- Consonants and vowels play different roles
- Some prefixes and suffixes, but usually for inflection only

SEMITIC RPM INCLUDES:

ROOT Made up of 2-4 consonants

Vocalism Affix carrying tense/aspect/voice; two vowels

TEMPLATE Pattern into which root and vocalism are placed

OTHER Some prefixes and suffixes (more to come)

An Overused Example

Table : The Ubiquitous $\sqrt{\text{ktb}}$ Example

Root	Meaning	Template
kataba	he wrote	CaCaCa
kattaba	he made someone write	CaCCaCa
nkataba	he subscribed	nCaCaCa
ktataba	he copied	CtaCaCa
kitaab	book	CiCaaC
kuttaab	Koranic school	CuCCaaC
kitaabii	written, in writing	CiCaaCa
kutayyib	booklet	CuCauuiC
maktaba	library, bookstore	maCCaCa
mukaatib	correspondant, reporter	muCaaCiC

THE ARABIC DERIVATIONAL VERBAL PARADIGM - CCC ROOTS

Table: $\sqrt{f\Omega}$, "doing, action"

Number	Verb	Template
I	faSal	$C_1VC_2VC_3$
II	fassal	$C_1VC_2C_2VC_3$
III	faaSal	$C_1VVC_2VC_3$
IV	?af\al	$2 C_1 C_2 V C_3$
V	tafassal	$taC_1VC_2C_2VC_3$
VI	tafaaSal	$taC_1VVC_2VC_3$
VII	nfaSal	$nC_1VC_2VC_3$
VIII	ftaSal	$C_1 tVC_2 VC_3$
IX	fSall	$C_1C_2VC_3C_3$
X	staffal	$staC_1C_2VC_3$

EXAMPLES!

Table: Examples of Real-Life Arabic Verbs I

Number	Example	Gloss	Root
I	tfasar	'he broke'	tfsr
II	tfassar	'he broke into pieces'	tfsr
III	kaatal	'he fought with'	ktl
IV	?at ^s laS	'he brought out'	t^{Ω}
V	tatfassar	'he was broken into pieces'	tfsr
VI	takaatal	'he fought with himself'	ktl
VII	intſasar	'he was broken'	tfsr
VIII	intasaf	'he was blown up'	nsf
IX	ıswadd	'he became black'	swd
X	ıstazyar	'he thought of something as small'	zyr

Inflectional Morphology – Maltese

Table : qatel, 'he kill{ed, s}'

	,	Imperfect
Singular		
1	qtilt	noqtol
2	qtilt	toqtol
3.masc	qatel	joqtol
3. ғем	qatlet	toqtol
Plural		
1	qtilna	noqtlu
2	qtiltu	toqtlu
3	qatlu	joqtlu

Do We Even Need a Root?

Pretheoretical Question

- Seems descriptively like we might need a root
- But do we need it *theoretically*?
- Question: could we just get away with an augmented definition of STEM?

- Phonological processes bounded by the root (≠ stem)
- Phonological processes triggered/targeting the root
- Generalizations we can't state w/o the root
- Semantics contributed by the root

DO WE EVEN NEED A ROOT?

Pretheoretical Question

- Seems descriptively like we might need a root
- But do we need it *theoretically*?
- Question: could we just get away with an augmented definition of stem?

EVIDENCE TO CONSIDER

- Phonological processes bounded by the root (≠ stem)
- Phonological processes triggered/targeting the root
- Generalizations we can't state w/o the root
- Semantics contributed by the root

Meaning Similarity Across Derived Forms

- We saw this one before:
- 33/35 words from $\sqrt{\text{ktb}}$ mean "writing, books"

Table : The Ubiquitous $\sqrt{\text{ktb}}$ Example

Root	Meaning	Template
kataba	he wrote	CaCaCa
kattaba	he made someone write	CaCCaCa
nkataba	he subscribed	nCaCaCa
ktataba	he copied	CtaCaCa
kitaab	book	CiCaaC
kitaabii	written, in writing	CiCaaCa
kutayyib	booklet	CuCauuiC
maktaba	library, bookstore	maCCaCa
mukaatib	correspondant, reporter	muCaaCiC

Greenbergian Restrictions on Root Consonants

Greenberg (1950)

- Fact: An asymmetry in root-consonant place distribution:
 - $C_1C_2C_2$ is common (\sqrt{hbb} , \sqrt{ftt} ,...)
- *C_1C_1C_2 it is never seen.
- This is the Obligatory Contour Principle at work!

- This OCP effect is even stronger:
- Roots of the form $C_1C_2C_1$ are statistically rare
- ... and speakers don't like nonce roots of this form

Greenbergian Restrictions on Root Consonants

Greenberg (1950)

- Fact: An asymmetry in root-consonant place distribution:
 - $C_1C_2C_2$ is common ($\sqrt{\hbar bb}$, $\sqrt{\int tt}$,...)
- *C_1C_1C_2 it is *never* seen.
- This is the Obligatory Contour Principle at work!

Pierrehumbert (1993)

- This OCP effect is even stronger:
- Roots of the form C₁C₂C₁ are statistically rare
- ... and speakers don't like nonce roots of this form

Psycholinguistics I

Productive OCP?!

- The OCP is also synchronically active
- Hebrew speakers given $C_1C_1C_2$ have a harder time:
- With word-recognition
- With deciding phonotactic plausibility

• Data from priming studies and Hebrew morphology:

Psycholinguistics I

PRODUCTIVE OCP?!

- The OCP is also synchronically active
- Hebrew speakers given $C_1C_1C_2$ have a harder time:
- With word-recognition
- With deciding phonotactic plausibility

Priming Studies

Data from priming studies and Hebrew morphology:

Roots Roots prime other roots

Templates Templates do *not* prime templates

Vocalism Somewhat inconclusive...

Psycholinguistics II – Aphasia

French Speech & Background

- French/Arabic bilingual; stroke caused deep aphasia
- Aphasia surfaces as metathesis in speech:
- French:
 - naval. 'naval' → vanal
 - pedalo, 'pedal boat' → palode

- But his Arabic errors metathesis *only* root consonants!
 - $2ufb, 'grass' \rightarrow fu?b$
 - ku?uus'glasses' → kusuu?
 - ta-wagguf, 'stopping' → ta-gawwuf
 - s-t-agaam, 'he stood straight' \rightarrow wa?iim

Psycholinguistics II – Aphasia

French Speech & Background

- French/Arabic bilingual; stroke caused deep aphasia
- Aphasia surfaces as metathesis in speech:
- French:
 - naval, 'naval' → vanal
 - pedalo, 'pedal boat' → palode

ARABIC SPEECH

- But his Arabic errors metathesis *only* root consonants!
 - $?ufb, 'grass' \rightarrow fu?b$
 - ku?uus'glasses' → kusuu?
 - ta-waqquf, 'stopping' → ta-qawwuf
 - s-t-aqaam, 'he stood straight' → wa?iim

A Bedouin Hijazi Language Game + Nickname FORMATION

BEDOUIN GAME

- Bedouins sometimes play a language game (cf., Pig Latin) which switches root consonants.
- Outputs for word difasna, "we pushed" (\sqrt{df} s):
 - da\afna
 - fida\na
 - fa\u00e9adna
 - *nafa\da

- Arabic nickname formation is TRUNCATION
- Thus muħammɛd → ħammuud (*maħħam)

A Bedouin Hijazi Language Game + Nickname Formation

BEDOUIN GAME

- Bedouins sometimes play a language game (cf., Pig Latin) which switches root consonants.
- Outputs for word *difa*\(\text{\text{na}}\), "we pushed" ($\sqrt{\text{df}\text{\text{\text{Y}}}}$):
 - da\afna
 - fida\na
 - faSadna
 - *nafa\da

ARABIC Hypocoristics (Nicknames)

- Arabic nickname formation is TRUNCATION
- But it always preserves root consonants!
- Thus muħammɛd → ħammuud (*maħħam)

FORM VIII SEMIVOWEL ASSIMILATION

FORM VIII/ftaSal PATTERN IN ARABIC WEAK VERBS

- Weak Verbs: verbs in Arabic with semivowels the root
- In form VIII, the semivowel disappears:
 - ttijah, "to head (for)" ($\sqrt{\text{wjh}}$; *utijah, *wtijah)
 - ttiqan, "to master, know well" (\sqrt{yqn} , *itiqan, *ytiqan)
 - ttixað, "to take, adopt" ($\sqrt{7x\delta}$, *?tixað)

No Assimilation Elsewhere

- Crucially, this does not happen elsewhere:
 - mawwtooni, "they would have killed me"
 - beythum, "their house"
 - jaa?ta, "she came"

FORM VIII SEMIVOWEL ASSIMILATION

FORM VIII/ftaSal Pattern in Arabic Weak Verbs

- Weak Verbs: verbs in Arabic with semivowels the root
- In form VIII, the semivowel disappears:
 - ttijah, "to head (for)" ($\sqrt{\text{wjh}}$; *utijah, *wtijah)
 - ttiqan, "to master, know well" (\sqrt{yqn} , *itiqan, *ytiqan)
 - ttixað, "to take, adopt" ($\sqrt{2x\delta}$, *?tixað)

No Assimilation Elsewhere

- Crucially, this does not happen elsewhere:
 - mawwtooni, "they would have killed me"
 - beythum, "their house"
 - jaa?ta, "she came"

FORM VIII VOICING CONTRADICTIONS

Form VIII Infix Assimilates to [α voice]

- The infix also has progressive assimilation for [± voice]:
 - ddi\a, "to claim" (*dti\a)
 - zdizam, "to be crowded" (*ztizam)

Voicing Assimilation Elsewhere

- But normally, voicing assimilation is regressive:
 - ?aðgal[°], "heavier" (*?aθgal)
 - ?azdaas, "sixths" (*?asdaas)
 - maθkuur, "mentioned" (*maðkuur)
 - ?akt^faf, "I cut" (*?agt^ftaf)

FORM VIII VOICING CONTRADICTIONS

Form VIII Infix Assimilates to [α voice]

- The infix also has progressive assimilation for [± voice]:
 - ddi\(\gamma\), "to claim" (*dti\(\gamma\))
 - zdizam, "to be crowded" (*ztizam)

Voicing Assimilation Elsewhere

- But normally, voicing assimilation is regressive:
 - ?aðgal^ˆ, "heavier" (*?aθgal)
 - ?azdaas, "sixths" (*?asdaas)
 - maθkuur, "mentioned" (*maðkuur)
 - ?akt[§]a§, "I cut" (*?agt[§]ta§)

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- After association, TIER CONFLATION applies, linearizing the string
- Many morphemes are underspecified and associate by SPREADING

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- After association, TIER CONFLATION applies, linearizing the string
- Many morphemes are underspecified and associate by SPREADING

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- Association governed by the tenets of Autosegmental Phonology

- Many morphemes are underspecified and associate by SPREADING

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- Association governed by the tenets of Autosegmental Phonology
- After association, TIER CONFLATION applies, linearizing the string
- Many morphemes are underspecified and associate by SPREADING

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- Association governed by the tenets of Autosegmental Phonology
- After association, TIER CONFLATION applies, linearizing the string
- Inventories of templates constrained by stipulation
- Many morphemes are underspecified and associate by SPREADING

A Prosodic Theory of Nonconcatenative Morphology

- McCarthy (1981): first systematic attempt to explain RPM
- Takes roots, vocalisms, and templates as real
- Association governed by the tenets of Autosegmental Phonology
- After association, tier conflation applies, linearizing the string
- Inventories of templates constrained by stipulation
- Many morphemes are underspecified and associate by SPREADING

TEMPLATIC INVENTORY

Table: McCarthy (1981)'s Inventory of Templates for Arabic

CVCVC	CVCVCCVC
CVCCVC	CVCVVCVC
CVVCVC	CCVCCVC
CCVCVC	CCVVCVC

• Or by rule:

1
$$[(\begin{Bmatrix} C \\ CV \end{Bmatrix})CV([+seg])CVC]$$

2 $V \rightarrow \emptyset/[CVC_CVC]$

TEMPLATIC INVENTORY

TABLE: McCarthy (1981)'s Inventory of Templates for Arabic

CVCVC	CVCVCCVC
CVCCVC	CVCVVCVC
CVVCVC	CCVCCVC
CCVCVC	CCVVCVC

• Or by rule:

1
$$[\begin{pmatrix} C \\ CV \end{pmatrix})CV([+seg])CVC]$$

2 $V \rightarrow \emptyset/[CVC_CVC]$

2
$$V \rightarrow \emptyset / [CVC_CVC]$$

Vocalic Inventory

- Recall that vowels encode {voice, aspect, tense, ...}
- Often in Arabic, it's the same vowel in both

Vocalic Inventory

- Recall that vowels encode {voice, aspect, tense, ...}
- Often in Arabic, it's the same vowel in both
- Don't need to go through them all, but...

Vocalic Inventory

- Recall that vowels encode {voice, aspect, tense, ...}
- Often in Arabic, it's the same vowel in both
- Don't need to go through them all, but...
 - $\mathbf{1}$ /a/ = [perfective, active]
 - (2) /u/ = [perfective, passive]

Vocalic Inventory

- Recall that vowels encode {voice, aspect, tense, ...}
- Often in Arabic, it's the same vowel in both
- Don't need to go through them all, but...
 - $\mathbf{1}$ /a/ = [perfective, active]
 - (2) /u/ = [perfective, passive]
 - (3) /u...a/ = [participle, active]
 - 4 /u...a...i/ = [participle, passive]

Applying All These Things...

- From here, things associate according to the following conventions:
 - 1 If there are several unassociated melodic elements and several unassociated melody-bearing elements, the former are associated one-to-one from *left to right* with latter.
 - ② If, after application of the first convention, there remain one unassociated melodic element and one or more unassociated melody-bearing elements, the former is associated with all of the latter.
 - If all melodic elements are associated and if there are one or more unassociated melody-bearing elements, all of the latter are assigned the melody associated with the melody-bearing element on their immediate left, if possible.
 - 4 All tier activity is tier internal.
 - **5** Everything respects the OCP.

Applying All These Things...

- From here, things associate according to the following conventions:
 - 1 If there are several unassociated melodic elements and several unassociated melody-bearing elements, the former are associated one-to-one from *left to right* with latter.
 - 2 If, after application of the first convention, there remain one unassociated melodic element and one or more unassociated melody-bearing elements, the former is associated with all of the latter.
 - If all melodic elements are associated and if there are one or more unassociated melody-bearing elements, all of the latter are assigned the melody associated with the melody-bearing element on their immediate left, if possible.
 - 4 All tier activity is tier internal.
 - **5** Everything respects the OCP.

APPLYING ALL THESE THINGS...

- From here, things associate according to the following conventions:
 - 1 If there are several unassociated melodic elements and several unassociated melody-bearing elements, the former are associated one-to-one from *left to right* with latter.
 - 2 If, after application of the first convention, there remain one unassociated melodic element and one or more unassociated melody-bearing elements, the former is associated with all of the latter.
 - 3 If all melodic elements are associated and if there are one or more unassociated melody-bearing elements, all of the latter are assigned the melody associated with the melody-bearing element on their immediate left, if possible.

APPLYING ALL THESE THINGS...

- From here, things associate according to the following conventions:
 - 1 If there are several unassociated melodic elements and several unassociated melody-bearing elements, the former are associated one-to-one from *left to right* with latter.
 - 2 If, after application of the first convention, there remain one unassociated melodic element and one or more unassociated melody-bearing elements, the former is associated with all of the latter.
 - 3 If all melodic elements are associated and if there are one or more unassociated melody-bearing elements, all of the latter are assigned the melody associated with the melody-bearing element on their immediate left, if possible.
 - **4** All tier activity is *tier internal*.

APPLYING ALL THESE THINGS...

- From here, things associate according to the following conventions:
 - 1 If there are several unassociated melodic elements and several unassociated melody-bearing elements, the former are associated one-to-one from *left to right* with latter.
 - 2 If, after application of the first convention, there remain one unassociated melodic element and one or more unassociated melody-bearing elements, the former is associated with all of the latter.
 - 3 If all melodic elements are associated and if there are one or more unassociated melody-bearing elements, all of the latter are assigned the melody associated with the melody-bearing element on their immediate left, if possible.
 - **4** All tier activity is *tier internal*.
 - **5** Everything respects the OCP.

THE ARABIC DERIVATIONAL VERBAL PARADIGM - McCarthy-Style!

Table: $\sqrt{f\Omega}$, "doing, action"

Number	Verb	Template
I	faSal	$C_1VC_2VC_3$
II	fassal	$C_1VC_2C_2VC_3$
III	faaSal	$C_1VVC_2VC_3$
IV	?af\al	$2 C_1 C_2 V C_3$
V	tafassal	$taC_1VC_2C_2VC_3$
VI	tafaaSal	$taC_1VVC_2VC_3$
VII	nfaSal	$nC_1VC_2VC_3$
VIII	ftaSal	$C_1 tVC_2 VC_3$
IX	fSall	$C_1C_2VC_3C_3$
X	staffal	$staC_1C_2VC_3$

- McCarthy's analysis gets us a few things nicely:
 - **1** OCP-Effects: combined with $L \rightarrow R$ spreading, this comes for free by stating OCP over the root
 - 2 RPM: this is built into the very architecture of the system
 - SEMANTICS: since the roots and vowels are morphemes, we can give them semantics
 - ITEM/ARRANGEMENT: technically, this is like an I+A model of RPM (sorta?)
- ... and at least now we have a story!

- McCarthy's analysis gets us a few things nicely:
 - **1** OCP-Effects: combined with $L \rightarrow R$ spreading, this comes for free by stating OCP over the root
 - 2 RPM: this is built into the very architecture of the system
 - SEMANTICS: since the roots and vowels are morphemes, we can give them semantics
 - ITEM/ARRANGEMENT: technically, this is like an I+A model of RPM (sorta?)
- ... and at least now we have a story!

- McCarthy's analysis gets us a few things nicely:
 - **1** OCP-Effects: combined with $L \rightarrow R$ spreading, this comes for free by stating OCP over the root
 - 2 RPM: this is built into the very architecture of the system
 - 3 Semantics: since the roots and vowels are morphemes, we can give them semantics
- ... and at least now we have a story!

- McCarthy's analysis gets us a few things nicely:
 - **1** OCP-Effects: combined with $L \rightarrow R$ spreading, this comes for free by stating OCP over the root
 - 2 RPM: this is built into the very architecture of the system
 - SEMANTICS: since the roots and vowels are morphemes, we can give them semantics
 - 4 ITEM/ARRANGEMENT: technically, this is like an I+A model of RPM (sorta?)
- ... and at least now we have a story!

- McCarthy's analysis gets us a few things nicely:
 - **1** OCP-Effects: combined with $L \rightarrow R$ spreading, this comes for free by stating OCP over the root
 - 2 RPM: this is built into the very architecture of the system
 - SEMANTICS: since the roots and vowels are morphemes, we can give them semantics
 - 4 ITEM/ARRANGEMENT: technically, this is like an I+A model of RPM (sorta?)
- ... and at least now we have a story!

- However, there are some problems, too:
 - 1 Cyclicity: we have no intrinsic account of (Brame's) cyclicity facts
 - 2 Templates: recall that templates don't prime...
 - ③ Templates: also, we've really just stipulated template inventory
 - Typology: the formal grammar of RPM is really weird from the standpoint of other languages
 - **(5)** OO-Effects: remember we had some evidence that some things actually *do* derive from words...

- However, there are some problems, too:
 - 1 Cyclicity: we have no intrinsic account of (Brame's) cyclicity facts
 - 2 Templates: recall that templates don't prime...
 - ③ Templates: also, we've really just stipulated template inventory
 - Typology: the formal grammar of RPM is really weird from the standpoint of other languages
 - **(5)** OO-Effects: remember we had some evidence that some things actually *do* derive from words...

22 / 32

- However, there are some problems, too:
 - 1 Cyclicity: we have no intrinsic account of (Brame's) cyclicity facts
 - TEMPLATES: recall that templates don't prime...
 - Templates: also, we've really just stipulated template inventory

- However, there are some problems, too:
 - 1 Cyclicity: we have no intrinsic account of (Brame's) cyclicity facts
 - TEMPLATES: recall that templates don't prime...
 - 3 Templates: also, we've really just stipulated template inventory
 - 4 Typology: the formal grammar of RPM is really weird from the standpoint of other languages

- However, there are some problems, too:
 - 1 Cyclicity: we have no intrinsic account of (Brame's) cyclicity facts
 - TEMPLATES: recall that templates don't prime...
 - 3 Templates: also, we've really just stipulated template inventory
 - 4 Typology: the formal grammar of RPM is really weird from the standpoint of other languages
 - **5** OO-Effects: remember we had some evidence that some things actually *do* derive from words...

22 / 32

- We could take another tack in explaining RPM
- So what if there's a lot of evidence for the root? Maybe it's an accident...
- We already know that at least some of the time the input is a word
- Idea: Prosody is primary: it stays fixed once it's set
- This theory developed right here at UCSC!

- We could take another tack in explaining RPM
- So what if there's a lot of evidence for the root? Maybe it's an accident...
- We already know that at least some of the time the input is a word
- Idea: Prosody is primary: it stays fixed once it's set
- This theory developed right here at UCSC!

- We could take another tack in explaining RPM
- So what if there's a lot of evidence for the root? Maybe it's an accident...
- We already know that at least some of the time the input is a word
- **Idea**: Prosody is primary: it stays fixed once it's set
- This theory developed right here at UCSC!

- We could take another tack in explaining RPM
- So what if there's a lot of evidence for the root? Maybe it's an accident...
- We already know that at least some of the time the input is a word
- **Idea**: Prosody is primary: it stays fixed once it's set
- This theory developed right here at UCSC!

CONSONANT CLUSTER TRANSFER IN HEBREW

WHERE DID ALL THESE CONSONANTS COME FROM?!

- Bat-El (1994): sometimes consonant clusters exist which shoudn't
- Always in *denominal* verbs
- The corresponding noun *always* has the cluster

- priklet, "to practice law" (from base praklit, "lawyer")
- frivrey, "to plumb" (from base fravray, "plumber")
- striptez, "to perform a strip tease" (from base streptiz, "striptease")

CONSONANT CLUSTER TRANSFER IN HEBREW

WHERE DID ALL THESE CONSONANTS COME FROM?!

- Bat-El (1994): sometimes consonant clusters exist which shoudn't
- Always in *denominal* verbs
- The corresponding noun *always* has the cluster

EXAMPLES!

- priklet, "to practice law" (from base praklit, "lawyer")
- frivrev, "to plumb" (from base fravrav, "plumber")
- striptez, "to perform a strip tease" (from base *streptiz*, "striptease")
- stingref, "to take down shorthand" (from base stenograf, "stenographer")

IMPERATIVE TRUNCATION IN COLLOQUIAL HEBREW

- In Colloquial Hebrew, one can form imperatives by truncation
- ... but this truncation doesn't really follow any templatic form
- However, it is predictible from the 2nd person future form

Base	Imperative	Truncation	Pattern	Meaning
telamed	tlamed	V	CCVCVC	"to teach"
ti∫ava	t∫ava	\vee	CCVCVC	"to swear"
tiftax	ftax	CV	CCVC	"to open"
takum	kum	CV	CVC	"to get up"

IMPERATIVE TRUNCATION IN COLLOQUIAL HEBREW

- In Colloquial Hebrew, one can form imperatives by truncation
- ... but this truncation doesn't really follow any templatic form
- However, it is predictible from the 2nd person future form

Base	Imperative	Truncation	Pattern	Meaning
telamed	tlamed	V	CCVCVC	"to teach"
ti∫ava	t∫ava	\vee	CCVCVC	"to swear"
tiftax	ftax	CV	CCVC	"to open"
takum	kum	CV	CVC	"to get up"

Imperative Truncation in Colloquial Hebrew

- In Colloquial Hebrew, one can form imperatives by truncation
- ... but this truncation doesn't really follow any templatic form
- However, it is predictible from the 2nd person future form

Base	Imperative	Truncation	Pattern	Meaning
telamed	tlamed	V	CCVCVC	"to teach"
ti∫ava	t∫ava			"to swear"
tiftax	ftax	CV	CCVC	"to open"
takum	kum	CV	CVC	"to get up"

Imperative Truncation in Colloquial Hebrew

- In Colloquial Hebrew, one can form imperatives by truncation
- ... but this truncation doesn't really follow any templatic form
- However, it is predictible from the 2nd person future form

TABLE: Patterns of Truncating Imperatives in Modern Hebrew

Base	Imperative	Truncation	Pattern	Meaning
telamed	tlamed	V	CCVCVC	"to teach"
ti∫ava	t∫ava	V	CCVCVC	"to swear"
tiftax	ftax	CV	CCVC	"to open"
takum	kum	CV	CVC	"to get up"

Vowels in Hebrew Deverbal Nouns

Converting $V \rightarrow N$ in Hebrew

- Sometimes, one can only predict the deverbal noun from the noun:
 - 1 If a noun has /a/ as its vowel, its DV is formed by doubling.
 - 2 If a noun has /i, u/ as its vowel, its DV is in the [j]-form.
 - 3 If a noun has /o, u/ as its vowel, its DV is in the [v]-form.

- cided, "to side" (from base cad, "side")
- tijek, "to file" (from base tik, "to file")
- [ivek, "to market" (from base [uk, "market")

Vowels in Hebrew Deverbal Nouns

Converting $V \rightarrow N$ in Hebrew

- Sometimes, one can only predict the deverbal noun from the noun:
 - 1 If a noun has /a/ as its vowel, its DV is formed by doubling.
 - 2 If a noun has /i, u/ as its vowel, its DV is in the [j]-form.
 - 3 If a noun has /o, u/ as its vowel, its DV is in the [v]-form.

HEBREW DENOMINAL VERB EXAMPLES

- cided, "to side" (from base cad, "side")
- tijek, "to file" (from base tik, "to file")
- [ivek, "to market" (from base [uk, "market")]

SEMANTICS AND COMPOSITIONALITY

REGULARITIES IN HEBREW

IV/huf\al Generally the passive of III/hif\all il VI/pu\al Generally the passive of V/pi\al el VII/hitpasel A passive of III/hifsil or a "middle"

SEMANTICS AND COMPOSITIONALITY

REGULARITIES IN HEBREW

IV/hufsal Generally the passive of III/hifsil VI/pu\al Generally the passive of V/pi\al el VII/hitpasel A passive of III/hifsil or a "middle"

REGULARITIES IN ARABIC

IV/?afsal is usually causative.

V/tafassal is usually the passive of II/fassal

VI/tafaa\al is usually the passive of III/faa\al

VIII/fta\al is sometimes the passive of I/fa\al

IX/f\(\sigma all \) is usually denominative

A Brief Outline of Fixed-Prosody and Melodic Overwriting

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word
 - 2 So the affixes must be *infixes*
 - 3 But they can't change the shape of the word (w/o altering prosody)
 - 4 And constraints ensure they don't alter consonants (Max-C)
 - **5** So the affixes (vowels) overwrite the base vowels

A Brief Outline of Fixed-Prosody and Melodic OVERWRITING

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:

A Brief Outline of Fixed-Prosody and Melodic OVERWRITING

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word
 - 2 So the affixes must be *infixes*

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word
 - 2 So the affixes must be *infixes*
 - But they can't change the shape of the word (w/o altering prosody)

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word
 - 2 So the affixes must be *infixes*
 - But they can't change the shape of the word (w/o altering prosody)
 - 4 And constraints ensure they don't alter consonants (Max-C)

- Fixed Prosody proceeds by noticing that word prosody is highly valued in Semitic
- Idea: When deciding what to do about affixes, the grammar:
 - 1 The stem (i.e., base word) must be Anchored to the edges of the word
 - 2 So the affixes must be *infixes*
 - But they can't change the shape of the word (w/o altering prosody)
 - 4 And constraints ensure they don't alter consonants (Max-C)
 - **5** So the affixes (vowels) overwrite the base vowels

- OO-Effects: We get all the word-word correspondence effects for free
- Prosody: Templates are *less* stipulative (but we need to derive the base)
- Typology: Semitic languages are *more* like other languages
- Templates: No templates (maybe) so they don't prime

- OO-Effects: We get all the word-word correspondence effects for free
- Prosody: Templates are *less* stipulative (but we need to derive the base)
- Typology: Semitic languages are *more* like other languages
- Templates: No templates (maybe) so they don't prime

- OO-Effects: We get all the word-word correspondence effects for free
- Prosody: Templates are *less* stipulative (but we need to derive the base)
- Typology: Semitic languages are *more* like other languages
- Templates: No templates (maybe) so they don't prime

- OO-Effects: We get all the word-word correspondence effects for free
- Prosody: Templates are *less* stipulative (but we need to derive the base)
- Typology: Semitic languages are *more* like other languages
- Templates: No templates (maybe) so they don't prime

- OO-Effects: Sometimes, the base (form I) doesn't exist
- Cyclicity: Still no account for (Brame's) cyclicity
- Semantics: What does the root contribute here?
- OCP Effects: No root, so how can this domain exist?
- Semivowels: Semivowel assimilation is problematic (see Tucker, 2011)

- OO-Effects: Sometimes, the base (form I) doesn't exist
- Cyclicity: Still no account for (Brame's) cyclicity
- Semantics: What does the root contribute here?
- OCP Effects: No root, so how can this domain exist?
- Semivowels: Semivowel assimilation is problematic (see Tucker, 2011)

- OO-Effects: Sometimes, the base (form I) doesn't exist
- Cyclicity: Still no account for (Brame's) cyclicity
- Semantics: What does the root contribute here?
- OCP Effects: No root, so how can this domain exist?
- Semivowels: Semivowel assimilation is problematic (see Tucker, 2011)

- OO-Effects: Sometimes, the base (form I) doesn't exist
- Cyclicity: Still no account for (Brame's) cyclicity
- Semantics: What does the root contribute here?
- OCP Effects: No root, so how can this domain exist?
- Semivowels: Semivowel assimilation is problematic (see Tucker, 2011)

- OO-Effects: Sometimes, the base (form I) doesn't exist
- Cyclicity: Still no account for (Brame's) cyclicity
- Semantics: What does the root contribute here?
- OCP Effects: No root, so how can this domain exist?
- Semivowels: Semivowel assimilation is problematic (see Tucker, 2011)

Conclusions I

WHAT SHOULD ONE MAKE OF ALL THIS?

- The evidence points to a HYBRID model that countenances:
 - 1 The root as base
 - Output words as bases
- Need to ensure that the template is not a primitive
- Syntactic structure might help with cyclicity

FUTURE RESEARCH

- More psycholing work nonce roots?
- Need tests to determine root- from word-derived words
- Why is there no Arabic', with vowels as roots?
- How does semantics fit into the picture?

Conclusions I

WHAT SHOULD ONE MAKE OF ALL THIS?

- The evidence points to a HYBRID model that countenances:
 - 1 The root as base
 - Output words as bases
- Need to ensure that the template is not a primitive
- Syntactic structure might help with cyclicity

FUTURE RESEARCH

- More psycholing work nonce roots?
- Need tests to determine root- from word-derived words
- Why is there no Arabic', with vowels as roots?
- How does semantics fit into the picture?

Conclusions II

- RPM languages are theoretically decisive
- Languages have strongly nonconcatenative morphologies
- They implicate a lot of the theory we've discussed in class
- They are not very well understood at present (at least not as well as English, . . .)
- They implicate the smallest units of morphemic combination (roots) on the surface

Conclusions II

- RPM languages are theoretically decisive
- Languages have strongly nonconcatenative morphologies
- They implicate a lot of the theory we've discussed in class
- They are not very well understood at present (at least not as well as English, . . .)
- They implicate the smallest units of morphemic combination (roots) on the surface

CONCLUSIONS II

- RPM languages are theoretically decisive
- Languages have strongly nonconcatenative morphologies
- They implicate a lot of the theory we've discussed in class
- They are not very well understood at present (at least not as well
- They implicate the smallest units of morphemic combination

CONCLUSIONS II

- RPM languages are theoretically decisive
- Languages have strongly nonconcatenative morphologies
- They implicate a lot of the theory we've discussed in class
- They are not very well understood at present (at least not as well as English, ...)
- They implicate the smallest units of morphemic combination

Conclusions II

- RPM languages are theoretically decisive
- Languages have strongly nonconcatenative morphologies
- They implicate a lot of the theory we've discussed in class
- They are not very well understood at present (at least not as well as English, . . .)
- They implicate the smallest units of morphemic combination (roots) on the surface